
JOURNAL OF
SOUND AND
VIBRATION

www.elsevier.com/locate/jsvi

Journal of Sound and Vibration 280 (2005) 837–848

Moving load response of micropolar elastic half-space
with voids

Rajneesh Kumara,b,*, Praveen Ailawaliaa,b

aDepartment of Mathematics, Kurukshetra University, Kurukshetra, Haryana 136119, India
bDepartment of Mathematics, S.S.I.E.T, DeraBassi, Distt. Patiala, Punjab, India

Received 29 August 2002; accepted 17 December 2003

Abstract

The steady state response of a semi-infinite micropolar elastic medium with voids at the free surface is
determined. The analytic expressions of the displacement components, force stress, couple stress and
volume fraction field are obtained by the use of Fourier transform technique and the numerical results are
illustrated graphically for magnesium crystal-like material. Special cases have been deduced.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The theory of linear elastic materials with voids is one of the most important generalizations of
the classical theory of elasticity. This theory has practical utility in investigating various types of
geological, biological and synthetic porous materials for which the elastic theory is inadequate.
This theory is concerned with elastic materials consisting of a distribution of small pores (voids),
in which the void volume is included among the kinematic variables and in the limiting case of
vanishing this volume, the theory reduces to the classical theory of elasticity.

A non-linear theory of elastic materials with voids was developed by Nunziato and Cowin [1].
Later Cowin and Nunziato [2] developed a theory of linear elastic materials with voids, for the
mathematical study of the mechanical behavior of porous solids. They considered several
applications of the linear theory by investigating the response of the materials to homogeneous
deformations, pure bending of a beam and small amplitudes acoustic waves. Iesan [3] derived the
basic equations of micropolar elastic materials with voids. Different authors [4–9] have discussed
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different type of problems in the theory of elastic materials with voids. Marin [10–13] discussed
different type of problems in micropolar theory of elastic solid with voids. Scarpetta [14] studied
the fundamental solutions in micropolar elasticity with voids.

The dynamical response to moving loads is an interesting subject in various technological and
geophysical circumstances and some recent investigations are concerned with this problem. For
instance, it is of great interest in solid dynamics where ground motions and stresses can be
produced by blast waves (surface pressure waves due to explosions), or by supersonic aircraft.
This type of investigation occur in many branches of engineering, for e.g., in bridges and railways,
beams subjected to pressure waves and piping systems subjected to two-phase flow. Other
applications are encountered within the context of contact mechanics like, the problem of high-
velocity rocket sleds sliding over steel guide rails. Most of the moving load problems solved so far
involve potential functions. However, the eigenvalue approach has the advantage that the
solutions of equations are found in the coupled form directly in the matrix notations, whereas the
potential functions approach requires decoupling of equations. Various authors [15–22] have
discussed the problems of moving load in the theory of elastic solids. Kumar and Gogna [23] and
Kumar and Deswal [24] studied the steady state response to moving loads in micropolar theory of
elasticity.

The purpose of the present paper is to determine the normal displacement, normal force stress,
tangential couple stress and volume fraction field in a micropolar elastic solid with voids due to
moving point load by applying integral transform technique. Numerical calculations are used to
invert the Fourier transform. Application of the paper may be found in mechanics viz. in
designing highways and airport runaways.

2. Formulation and solution of the problem

We consider a normal point load of magnitude F moving over the free surface of micropolar
half-space with voids. The rectangular Cartesian co-ordinate are introduced having origin on the
surface z ¼ 0 and z-axis pointing vertically into the medium. Let us consider a pressure pulse
Fðx þ UtÞ which is moving with a constant speed in the negative x direction for an infinite long
time so that a steady state prevails in the neighborhood of the loading as seen by an observer
moving with the load.

Following Iesan [3], the field equations and stress–strain relations in micropolar elastic solid
with voids without body forces and body couples can be written as

ðlþ mÞrðr � uÞ þ ðmþ KÞr2uþ Kðr � /Þ þ b�rc ¼ r
@2u

@t2
; ð1Þ

ðaþ bþ gÞrðr � /Þ � gr� ðr� /Þ þ Kðr � uÞ � 2K/ ¼ rj
@2/
@t2

; ð2Þ

a�r2c� B�c� o�
@c
@t

� b�r � u ¼ rz�
@2c
@t2

; ð3Þ

tij ¼ lur;r þ mðui;j þ uj;iÞ þ Kðuj;i � eijrfrÞ þ b�cdij ; ð4Þ
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mij ¼ afr;rdij þ bfi;j þ gfj;i; ð5Þ

where a; b; g; l; m;K are the material constants, j is the microinertia, r is the density of solid, u is
the displacement vector, / is the microinertia, c is the volume fraction field, tij is the force stress,
mij is the couple stress and a�; b�; B�;o� and z� are the material constant due to the presence of
voids.

For two-dimensional problem, we assume

u ¼ ðu1; 0; u3Þ; / ¼ ð0;f2; 0Þ: ð6Þ

Following Fung [25], a Galilean transformation

x� ¼ x þ Ut; z� ¼ z; t� ¼ t ð7Þ

is introduced. The boundary conditions would be independent of t� and assuming the
dimensionless variables defined by

x0 ¼
o
c1

x�; z0 ¼
o
c1

z�; f0
2 ¼

o2

c21
jf2; u01 ¼

o
c1

u1;

u0
3 ¼

o
c1

u3; t0ij ¼
tij

l
; m0

ij ¼
o

c1l
mij; c0 ¼

o2

c21
jc; ð8Þ

where

c21 ¼
lþ 2mþ K

r
and o2 ¼

K

rj
:

In Eqs. (1)–(3) we get (after suppressing the primes)

ðlþ mÞ
@

@x

@u1

@x
þ

@u3

@z

� �
þ ðmþ KÞr2u1 �

Kc21
o2j

@f2

@z
þ

b�c21
o2j

@c
@x

¼ rU2@
2u1

@x2
; ð9Þ

ðlþ mÞ
@

@z

@u1

@x
þ

@u3

@z

� �
þ ðmþ KÞr2u3 �

Kc21
o2j

@f2

@x
þ

b�c21
o2j

@c
@z

¼ rU2 @
2u3

@x2
; ð10Þ

g
j
r2f2 þ K

@u1

@z
�

@u3

@x

� �
�

2Kc21
o2j

f2 ¼ rU2 @
2f2

@x2
; ð11Þ

a�

j
r2c�

B�c21
o2j

c�
o�Uc1

oj

@c
@x

� b�
@u1

@x
þ
@u3

@z

� �
¼

rz�U2

j

@2c
@x2

: ð12Þ

Applying Fourier transform defined by

*fðx; zÞ ¼
Z

N

�N

f ðx; zÞeixx dx ð13Þ

in Eqs. (9)–(12) we obtain (where primes denotes differentiation with respect to z)

*u001 ¼ a11x
2 *u1 þ ixa13 *u

0
3 þ a14

*f0
2 þ ixa12

*c; ð14Þ

*u003 ¼ x2a21 *u3 þ ixa23 *u
0
1 þ ixa22

*f2 þ a24
*c; ð15Þ
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*f00
2 ¼ ðx2a32 � a33Þ *f2 � a31 *u

0
1 þ ixa31 *u3; ð16Þ

*c00 ¼ ðx2a42 � a43Þ *cþ a41 *u1 � a41 *u
0
3; ð17Þ

where

a11 ¼
ðlþ 2mþ KÞ � rU2

mþ K
; a12 ¼

b�c1

ojðmþ KÞ
; a21 ¼

ðmþ KÞ � rU2

lþ 2mþ K
;

a22 ¼
Kc21

o2jðlþ 2mþ KÞ
; a13 ¼

lþ m
mþ K

; a33 ¼
2Kc21
o2j

; a32 ¼
g� rU2j

g
;

a14 ¼
Kc21

o2jðmþ KÞ
; a23 ¼

lþ m
lþ 2mþ K

; a24 ¼ �
b�c21

o2jðlþ 2mþ KÞ
;

a31 ¼
Kj

g
; a42 ¼

a� � rU2z�

a�
; a41 ¼ �

b�j

a�
; a43 ¼

ixoo�Uc1 � B�c21
a�o2

; ð18Þ

The set of equations (14)–(17) may be written as

d

dz
W ðx; zÞ ¼ AðxÞW ðx; zÞ; ð19Þ

where

W ¼
V

V 0

 !
; A ¼

O I

A1 A2

 !
; V ¼

*u1

*u3

*f2

*c

0
BBBB@

1
CCCCA; ð20Þ

A1 ¼

x2a11 0 0 ixa12

0 x2a21 ixa22 0

0 ixa31 x2a32 � a33 0

ixa41 0 0 x2a42 � a43

0
BBBB@

1
CCCCA; ð21Þ

A2 ¼

0 ixa13 a14 0

ixa23 0 0 a24

�a31 0 0 0

0 �a41 0 0

0
BBB@

1
CCCA ð22Þ

and O and I are zero and identity matrices of the order 4.
To solve Eq. (19), we assume

W ðx; zÞ ¼ X ðxÞeqz ð23Þ

which leads to an eigenvalue problem. The characteristic equation corresponding to matrix A is
given by

jA � qI j ¼ 0: ð24Þ
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This gives

q8 þ l1q6 þ l2q4 þ l3q2 þ l4 ¼ 0; ð25Þ

where

l1 ¼ x2ða13a23 � a42 � a32 � a11 � a21Þ � a24a41 þ a14a31 þ a43 þ a33;

l2 ¼ x4Z1 þ x2Z2 þ Z3;

l3 ¼ x6Z4 þ x4Z5 þ x2Z6;

l4 ¼ x8Z7 þ x6Z8 þ x4Z9;

Z1 ¼ a11ða42 þ a21 þ a32Þ þ ða32 þ a42Þða21 � a13a23Þ þ a32a42;

Z2 ¼ ða13a23 � a11 � a21Þða33 þ a43Þ � a14a31ða21 � a23Þ � a41a24ða11 � a13Þ

� a31ða14a42 þ a22a13Þ � a41ða12a23 þ a24a32Þ þ a31a22 þ a41a12 � a32a43 � a33a42;

Z3 ¼ ða33 þ a31a14Þða43 þ a41a24Þ;

Z4 ¼ a32ða23a13a42 � a21a42 � a11a42 � a11a21Þ;

Z5 ¼ a31a42ða13a22 þ a14a21 � a14a23Þ þ a23a32ða12a41 � a13a43Þ þ a41a32a24ða11 � a13Þ

þ ða11 þ a21Þða32a43 þ a33a42Þ � a23a13a33a42 � a21ða11a42 þ a12a41 � a11a33Þ

� a31a22ða11 þ a42Þ � a12a41a32;

Z6 ¼ ða22a31 � a23a33Þða12a41 � a13a43Þ � a14a31ða43a21 þ a43a23 � a41a24Þ

� a33a41a24ða11 � a13Þ � a21a43ða33 � a11Þ þ a33ða11a43 þ a12a41Þ þ a31a22a43;

Z7 ¼ a11a21a42a32; Z8 ¼ a11a31a22a42 þ a41a12a21a32 � a11a21ða42a33 þ a43a32Þ;

Z9 ¼ ða11a43 � a41a12Þða21a33 � a31a22Þ; ð26Þ

The eigenvalues of matrix A are characteristic roots of Eq. (25). The vectors X ðxÞ corresponds to
the eigenvalues qs can be determined by solving the homogeneous equation

½A � qI �X ðxÞ ¼ 0: ð27Þ

The set of eigenvectors XsðxÞ; s ¼ 1; 2;y; 8 are obtained as

XsðxÞ ¼
Xs1ðxÞ

Xs2ðxÞ

 !
; ð28Þ

where

Xs1ðxÞ ¼

x

ibsqs

xasqs

ids

0
BBB@

1
CCCA; Xs2ðxÞ ¼

xqs

ibsq
2
s

xasq
2
s

idsqs

0
BBB@

1
CCCA; q ¼ qs; s ¼ 1; 2; 3; 4; ð29Þ
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Xj1ðxÞ ¼

x

�ibjqj

�xajqj

idj

0
BBB@

1
CCCA; Xj2ðxÞ ¼

�xqj

ibjq
2
j

xajq
2
j

�idjqj

0
BBBB@

1
CCCCA; j ¼ s þ 3; q ¼ �qs ð30Þ

and

as ¼ a12 q2
s a24 � q2

s a24 a11 þ
a12a23

a24
þ a32 þ a33 þ a31a14

� �
þ x4a32ða11a24 þ a12a23Þ

�

þ x2ða31a12a22 � a33a11a24 � a33a12a23Þ


=r;

bs ¼ a12a31½x
2ða11a24 þ a12a23 � a12a21Þ þ q2

s ða24a31 þ a12 � a24Þ�=r;

ds ¼
a41ðq2

s bs � x2Þ

x2a42 � a43 � q2
s

;

r ¼ � q4
s ða24a31 þ a12Þ þ q2

s ½ða24a31 þ a12Þðx
2a32 � a33Þ � a31a14a24 þ x2a12a21�

þ x2a12a21ða33 � x2a32Þ � x2a31a12a22: ð31Þ

The solution of Eq. (23) is given by

W ðx; zÞ ¼
X4
s¼1

½BsXsðxÞ expðqszÞ þ Bsþ4Xsþ4ðxÞ expð�qszÞ�: ð32Þ

3. Boundary conditions

For a concentrated line load, we take Fðx þ UtÞ ¼ Fdðx�Þ; where dðx�Þ is Dirac delta function
and F is the magnitude of force applied, therefore in moving co-ordinates the boundary
conditions at the free surface z ¼ 0 are

t33 ¼ �Fdðx�Þ; t31 ¼ m32 ¼
@c
@z

¼ 0: ð33Þ

Applying Fourier transform defined by Eq. (13) in the boundary conditions (33) and using
Eqs. (4)–(8) and (32), we obtain the expressions for displacement components, force stress, couple
stress and volume fraction field for micropolar elastic solid with voids as

*u3 ¼
F i

D
½a1q1D0

1e
�q1z � a2q2D0

2e
�q2z þ a3q3D0

3e
�q3z � a4q4D0

4e
�q4z�; ð34Þ

*t33 ¼ �
F

D
½r1D0

1e
�q1z � r2D0

2e
�q2z þ r3D0

3e
�q3z � r4D0

4e
�q4z�; ð35Þ

*m32 ¼ �
Fgx
jlD

½b1q2
1D

0
1e

�q1z � b2q2
2D

0
2e

�q2z þ b3q2
3D

0
3e

�q3z � b4q2
4D

0
4e

�q4z�; ð36Þ
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*c ¼ �
F i

D
½d1D0

1e
�q1z � d2D0

2e
�q2z þ d3D0

3e
�q3z � d4D0

4e
�q4z�; ð37Þ

where

D ¼ q3q4t1f1 � q2q4t2f2 þ q2q3t3f3 � q1q4t4f4 þ q1q3t5f5 � q1q2t6f6;

t1;2;3 ¼ r1t2;3;4 � r2;3;4t1; t4;5;6 ¼ r3;4;4t2;2;3 � r2;2;3t3;4;4;

f1;2;3 ¼ b3;2;2q3;2;2d4;4;3 � b4;4;3q4;4;3d3;2;2; f4;5;6 ¼ b1q1d4;3;2 � b4;3;2q4;3;2d1;

D0
1 ¼ t2q3q4f1 � t3q2q4f2 þ t4q2q3f3; D0

2 ¼ t1q3q4f1 � t3q1q4f4 þ t4q1q3f5;

D0
3 ¼ t1q2q4f2 � t2q1q4f4 þ t4q1q2f6; D0

4 ¼ t1q2q3f3 � t2q1q3f5 þ t3q1q2f6;

rn ¼ i �x2 þ
lþ 2mþ K

l

� �
bnq2

n þ
b�c21
o2jl

dn

� 

;

tn ¼ �xqn mbn þ ðmþ KÞ �
Kc21
o2j

an

� 

; n ¼ 1; 2; 3; 4: ð38Þ

4. Particular case

Neglecting the material constants due to the presence of voids (i.e., a� ¼ b� ¼ z� ¼ B� ¼
o� ¼ 0), we obtain the expressions for normal displacement, force stress and couple stress for a
micropolar elastic solid as

*u3 ¼ �
F ix
D0

½b01D
0
10e

�p1z � b02D
0
20e

�p2z þ b0
3D

0
30e

�p3z�; ð39Þ

*t33 ¼ �
F ix
D0

½s01D
0
10e

�p1z � s02D
0
20e

�p2z þ s03D
0
30e

�p3z�; ð40Þ

*m32 ¼
Fg

jlD0
½a01p1D0

10e
�p1z � a02p2D0

20e
�p2z þ a0

3p3D0
30e

�p3z�; ð41Þ

where

D0 ¼ s01D
0
10 � s02D

0
20 þ s03D

0
30; D0

10 ¼ r02a0
3p3 � r03a02p2;

D0
20 ¼ r01a03p3 � r03a01p1; D0

30 ¼ r01a0
2p2 � r02a0

1p1;

s0Y ¼ ix pY �
lþ 2mþ K

l

� �
b0YpY

� 

; r0Y ¼ mx2b0

Y þ ðmþ KÞp2
Y �

Kc21
o2j

a0
Y;

a0
Y ¼ �

p4
Y � p2

Yx
2ða13a23 � a21 � a11Þ � x4a11a21

r0
;

b0
Y ¼

x2a11a22 � p2
Yða22 þ a14a23Þ
r0

; r0 ¼ x2ða13a22 þ a14a21Þ � p2
Ya14; Y ¼ 1; 2; 3: ð42Þ

The eigenvalues 7pY ðY ¼ 1; 2; 3Þ for a micropolar elastic solid are given by the equation

p6 þ l01p4 þ l02p2 þ l03 ¼ 0; ð43Þ
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where

l01 ¼ x2ða13a23 � a11 � a21 � a32Þ þ a14a31 � a33;

l02 ¼ x4½a11a21 þ a32ða11 þ a21 � a13a23Þ� þ x2½�a31ða22a13 þ a21a14 þ a14a23Þ

þ a33ða11 þ a21 � a13a23Þ� � a22a31

and

l03 ¼ �x4a11½a21ðx
2a32 þ a33Þ � a22a31�: ð44Þ

Inversion of the transform: To obtain the solution of the problem in the physical domain, we
must invert the transform in Eqs. (34)–(37) and (39)–(41). These expressions are functions of z and
the parameter of Fourier transform x; hence are of the form *fðx; zÞ: To get the function f ðx; zÞ in
the physical domain, we invert the Fourier transform using

f ðx; zÞ ¼
1

2p

Z
N

�N

*fðx; zÞe�ixx dx ð45Þ

¼
1

2p

Z
N

�N

½CosðxxÞfe � i SinðxxÞfo� dx; ð46Þ

where fe and fo are, respectively, even and odd parts of the function *fðx; zÞ: The method for
evaluating this integral is described by Press et al. [26] which involves the use of Rhomberg’s
integration with adaptive step size. This also uses the results from successive refinements of the
extended trapezoidal rule followed by extrapolation of the results to the limit when the step size
tends to zero.

5. Numerical results and discussions

We take magnesium crystal-like material [27] as micropolar elastic solid with voids,

r ¼ 1:74 gm=cm3; l ¼ 9:4� 1011 dyn=cm2; m ¼ 4:0� 1011 dyn=cm2;

K ¼ 1:0� 1011 dyn=cm2; g ¼ 0:779� 10�4 dyn; j ¼ 0:2� 10�15 cm2;

a� ¼ 3:668� 10�4 dyn; b� ¼ 1:13849� 1011 dyn=cm2; B� ¼ 1:475� 1011 dyn=cm2;

o� ¼ 0:0787� 10�2 dyn s=cm2; z� ¼ 1:753� 10�15 cm2:

The variations of normal displacement U3 ¼ ðu3=FÞ; normal force stress T33 ¼ ðt33=F Þ; tangential
couple stress M32 ¼ ðm32=FÞ for micropolar elastic solid with voids (MWV) and micropolar
elastic solid (MES) have been studied and the variations of these components with distance x have
been shown by (a) solid line (——) for MWV and (b) dashed line (- - - -) for MES. These
variations are shown in Figs. 1–4. The computations are carried out for Uoc1 and z ¼ 1:0 in the
range 0pxp10:0:
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Fig. 1. Variation of normal displacement U3 ¼ ðu3=F Þ with distance x:

Fig. 2. Variation of normal force stress T33 ¼ ðt33=F Þ with distance x:
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Fig. 3. Variation of tangential couple stress M32 ¼ ðm32=F Þ with distance x:

Fig. 4. Variation of volume fraction field V� ¼ ðv=F Þ with distance x:
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6. Discussions for various cases

The values of normal displacement for MWV decreases sharply with increase in distance x: The
values of normal displacement for MES are very small as compared to the values for MWV and
hence the values for MES have been magnified by multiplying the original values by 100. These
variations of normal displacement are shown in Fig. 1. The variations of normal force stress are
similar in nature for MWV and MES with difference in their magnitudes. The values of normal
force stress for both the solids initially decreases and then oscillates with increase in distance x:
However, the decrease is more sharp for MES. These variations are shown in Fig. 2.

Initially, the values of tangential couple stress in both the cases decreases sharply and then
oscillates with increase in distance. The oscillations which converges to zero forms more crests and
troughs for MES. The values of tangential couple stress for MES have been magnified by
multiplying the original values by 10. The variations of tangential couple stress are shown in
Fig. 3.

The volume fraction field has a sharp fall in values for 0pxp5:0 and then the values starts
oscillating and converges to zero. The variation of volume fraction field for MWV is shown in
Fig. 4.

7. Conclusion

The presence of voids plays a significant role on all the quantities. The values of normal
displacement and tangential couple stress increases while normal force stress decreases due to the
presence of voids. The values of all the quantities converges to zero with increase in distance x:
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